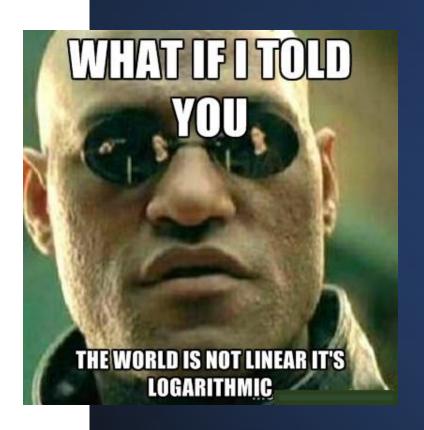
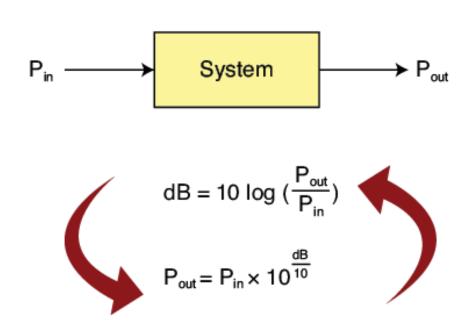

dB 101



Fred Botero W2SUB

Basic Logarithms


• Log(x) = y Means that $x = 10^y$

- Therefore log(10)=1 because $10^1=10$,
- log(100)=2 because $10^2=100$ and so on.
- Similarly, log(0.01) = -2 because $10^{-2} = 0.01$ and log(1) = 0 because $10^{0} = 1$

What the heck is a decibel?

The decibel is one-tenth of a "Bel" ("deci"=1/10), resulting in the "10" in the formula above

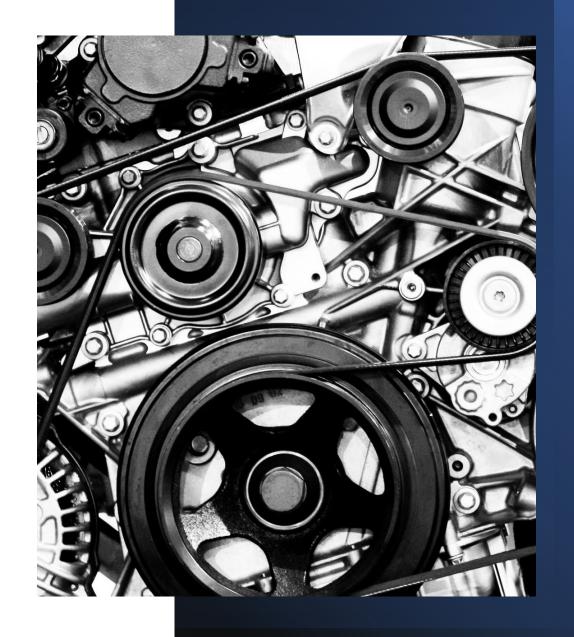
P_{out}/P_{in}	dB
0.000001	-50 dB
0.01	–20 dB
0.1	–10 dB
0.5	–3 dB
0.8	-1 dB
1	0 dB
1.2	+1 dB
2	+3 dB
10	+10 dB
100	+20 dB
100,000	+50 dB

Everyday decibel levels

Here are some common sounds from everyday life and their decibel ratings:

• Near total silence: 0 dB

• A whisper: 15 dB


• Normal conversation: 60 dB

• A lawn mower: 90 dB

• **A car horn**: 110 dB

• A rock concert or a jet engine: 120 dB

• A gunshot or firecracker: 140 dB

Easy Thumbrules

Change in dB	Change in sound energy
3 dB increase	sound energy is doubled
3 dB <u>decrease</u>	sound energy is halved
10 dB increase	sound energy is increased by a factor of 10
10 dB <u>decrease</u>	sound energy is decreased by a factor of 10
20 dB increase	sound energy is increased by a factor of 100
20 dB <u>decrease</u>	sound energy is decreased by a factor of 100

Example of adding decibels


Imagine that you have a 100 mW signal, and chain two attenuators valued at -20 dB and -3 dB respectively.

What would be the output power?

-20 dB means /100, and -3 dB means /2, so overall 200.

The output power will be 100 mW / 200 = 0.5 mW

What about dBA and dBm?

- In sound measurement, dB (decibels) is a general unit for measuring sound pressure level, while dBA (Aweighted decibels) is a specific measurement that accounts for how the human ear perceives sound at different frequencies.
 - dBA is a more realistic representation of how loud something sounds to a human, as it downweights low and high frequencies where the human ear is less sensitive.
- dB (decibel) and dBm (decibel-milliwatt) are both logarithmic units used in electronics and communication, but they differ in how they quantify power or signal levels.
 - dB is a <u>relative</u> measurement, expressing the ratio between two power levels, while dBm is an <u>absolute</u> measurement, referencing a signal's power relative to a fixed level of 1 milliwatt (mW)

Sources for self study

https://circuitcellar.com/research-design-hub/dbfor-dummies/ https://pulsarinstruments.com/news/understandingdecibels-decibel-scale-and-noise-measurementunits/